
DISCRETE SEMICONDUCTORS

DATA SHEET

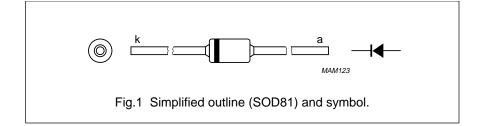
BYD33 series Fast soft-recovery controlled avalanche rectifiers

Product specification Supersedes data of October 1994 File under Discrete Semiconductors, SC01

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

FEATURES


- Glass passivated
- High maximum operating temperature
- Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack.

DESCRIPTION

Cavity free cylindrical glass package through Implotec^{™(1)} technology. This package is hermetically sealed

and fatigue free as coefficients of expansion of all used parts are matched.

(1) Implotec is a trademark of Philips.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RRM}	repetitive peak reverse voltage				
	BYD33D		_	200	V
	BYD33G		_	400	V
	BYD33J		_	600	V
	BYD33K		_	800	V
	BYD33M		_	1000	V
	BYD33U		_	1200	V
	BYD33V		_	1400	V
V _R	continuous reverse voltage				
	BYD33D		_	200	V
	BYD33G		_	400	V
	BYD33J		_	600	V
	BYD33K		_	800	V
	BYD33M		_	1000	V
	BYD33U		_	1200	V
	BYD33V		_	1400	V
I _{F(AV)}	average forward current	T _{tp} = 55 °C; lead length = 10 mm;			
	BYD33D to M	see Figs 2 and 3;	_	1.30	Α
	BYD33U and V	averaged over any 20 ms period; see also Figs 10 and 11	_	1.26	А
I _{F(AV)}	average forward current	T _{amb} = 65 °C; PCB mounting (see			
	BYD33D to M	Fig.19); see Figs 4 and 5;	_	0.70	Α
	BYD33U and V	averaged over any 20 ms period; see also Figs 10 and 11	_	0.67	А
I _{FRM}	repetitive peak forward current	T _{tp} = 55 °C; see Figs 6 and 7			
	BYD33D to M		_	12	Α
	BYD33U and V		_	11	Α

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{FRM}	repetitive peak forward current	T _{amb} = 65 °C; see Figs 8 and 9			
	BYD33D to M		_	7	Α
	BYD33U and V		_	6	A
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave;	_	20	Α
		$T_j = T_{j \text{ max}}$ prior to surge;			
		$V_R = V_{RRMmax}$			
E _{RSM}	non-repetitive peak reverse	L = 120 mH; $T_j = T_{j \text{ max}}$ prior to			
	avalanche energy	surge; inductive load switched off			
	BYD33D to J		_	10	mJ
	BYD33K to V		_	7	mJ
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Figs 12 and 13	-65	+175	°C

ELECTRICAL CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 1 \text{ A}; T_j = T_{j \text{ max}};$ see Figs 14 and 15	_	_	1.1	V
		I _F = 1 A; see Figs 14 and 15	_	_	1.3	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYD33D		300	_	_	V
	BYD33G		500	_	_	V
	BYD33J		700	_	_	V
	BYD33K		900	_	_	V
	BYD33M		1100	_	_	V
	BYD33U		1300	_	_	V
	BYD33V		1500	_	_	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig.16	_	_	1	μΑ
		$V_R = V_{RRMmax};$ $T_j = 165 ^{\circ}C;$ see Fig.16	_	_	100	μΑ
t _{rr}	reverse recovery time	when switched from				
	BYD33D to J	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	_	_	250	ns
	BYD33K and M	measured at $I_R = 0.25 A$ see Fig.21	_	_	300	ns
	BYD33U and V	300 T 19.2 T		_	500	ns
C _d	diode capacitance	$f = 1 \text{ MHz}; V_R = 0 \text{ V};$ see Figs 17 and 18	_	20	_	pF

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
dI _R	maximum slope of reverse recovery current	when switched from $I_F = 1 \text{ A to V}_R \ge 30 \text{ V}$				
Tut	BYD33D to J	and $dI_F/dt = -1 A/\mu s$; see Fig.20	_	_	6	A/μs
	BYD33K to V	333 i ig.23	_	_	5	A/μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	60	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	120	K/W

Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer \geq 40 μ m, see Fig.19. For more information please refer to the *'General Part of Handbook SC01'*.

Fast soft-recovery controlled avalanche rectifiers

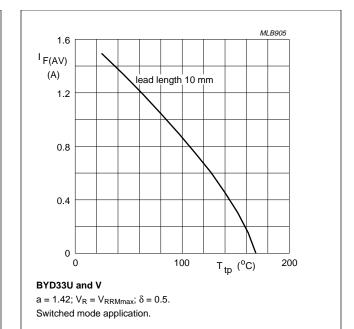
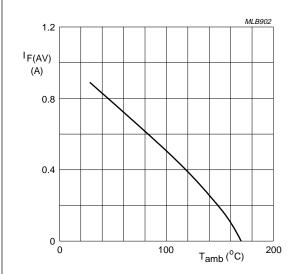
BYD33 series

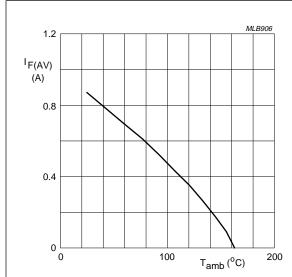
GRAPHICAL DATA

BYD33D to M

 $a = 1.42; \ V_R = V_{RRMmax}; \ \delta = 0.5.$ Switched mode application.

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

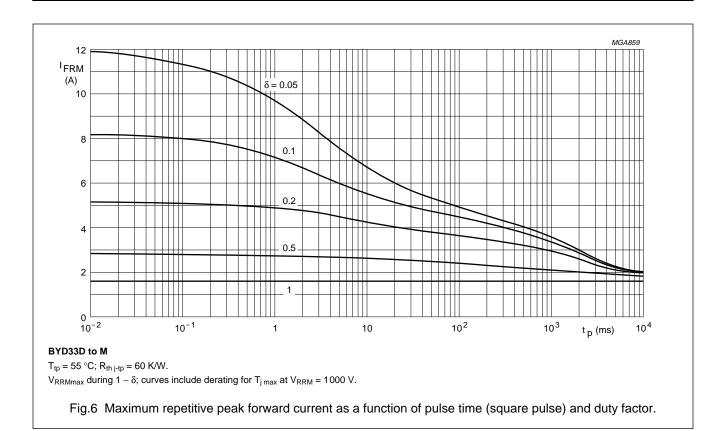

Fig.3 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

BYD33D to M

 $a=1.42;\ V_R=V_{RRMmax};\ \delta=0.5.$ Device mounted as shown in Fig.19. Switched mode application.

Fig.4 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

BYD33U and V


a = 1.42; $V_R = V_{RRMmax}$; δ = 0.5. Device mounted as shown in Fig.19.

Switched mode application.

Fig.5 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

MLB909 12 1_{FRM} 10 $\delta = 0.05$ 8 6 0.2 4 0.5 2 0 L 10⁻² 10^{-1} 10 10² 10³ t_p (ms) 10⁴ BYD33U and V $T_{tp} = 55^{\circ}C; R_{th j-tp} = 60 \text{ K/W}.$ V_{RRMmax} during 1 – δ ; curves include derating for $T_{j\,max}$ at V_{RRM} = 1400 V.

Fig.7 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

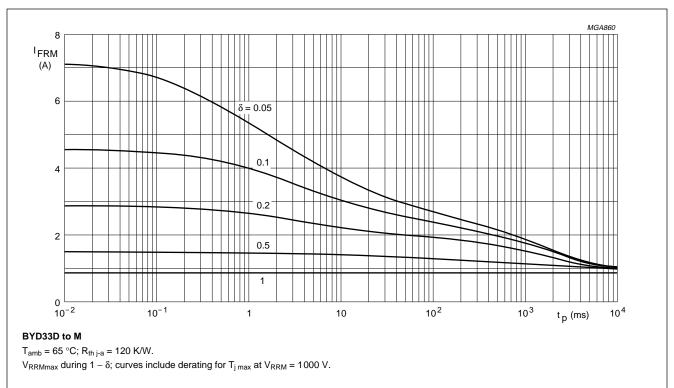
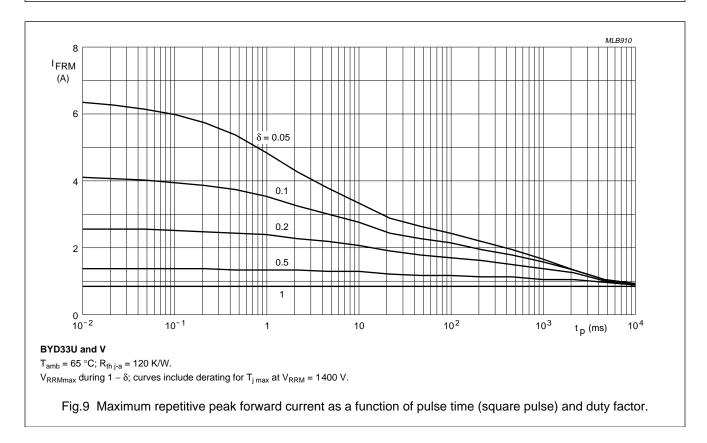
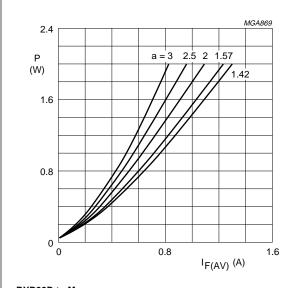




Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

BYD33D to M $a = I_{F(RMS)}/I_{F(AV)}; \ V_R = V_{RRMmax}; \ \delta = 0.5.$

Fig.10 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

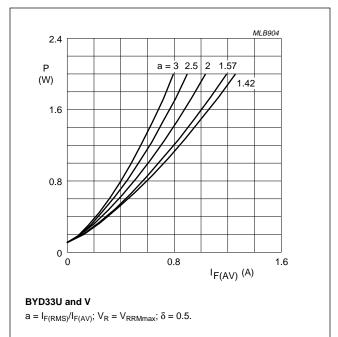
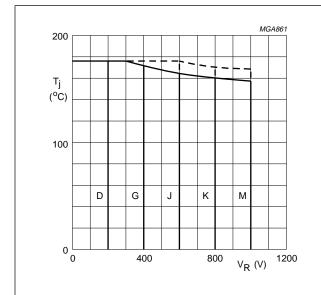
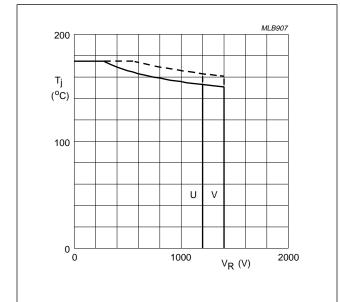



Fig.11 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.



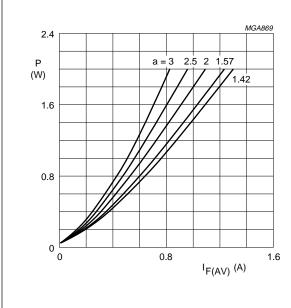
BYD33D to M

Solid line = V_R .

Dotted line = V_{RRM} ; δ = 0.5.

Fig.12 Maximum permissible junction temperature as a function of reverse voltage.

BYD33U and V


Solid line = V_R .

Dotted line = V_{RRM} ; $\delta = 0.5$.

Fig.13 Maximum permissible junction temperature as a function of reverse voltage.

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

BYD33D to M

Solid line: $T_j = 25$ °C. Dotted line: $T_i = 175$ °C.

Fig.14 Forward current as a function of forward voltage; maximum values.

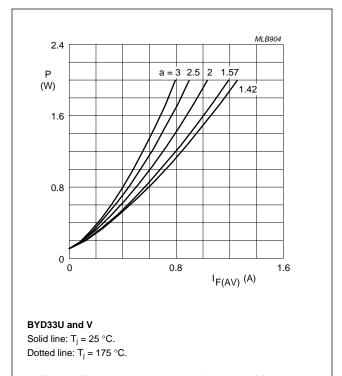


Fig.15 Forward current as a function of forward voltage; maximum values.

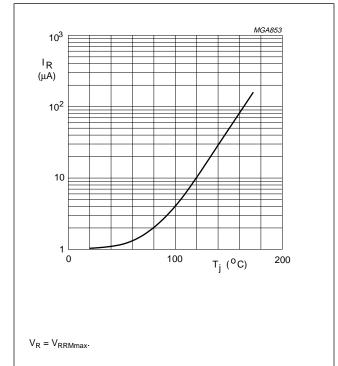
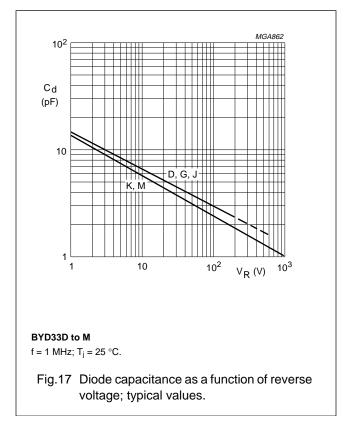
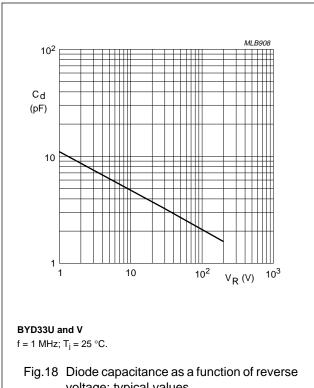
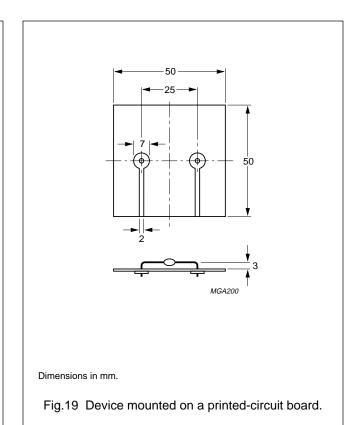
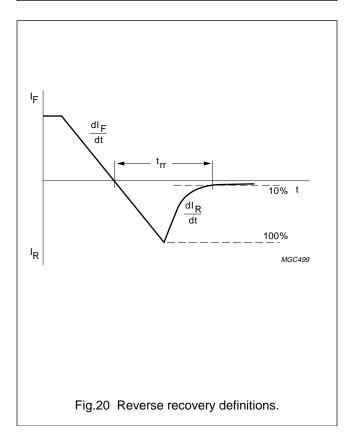
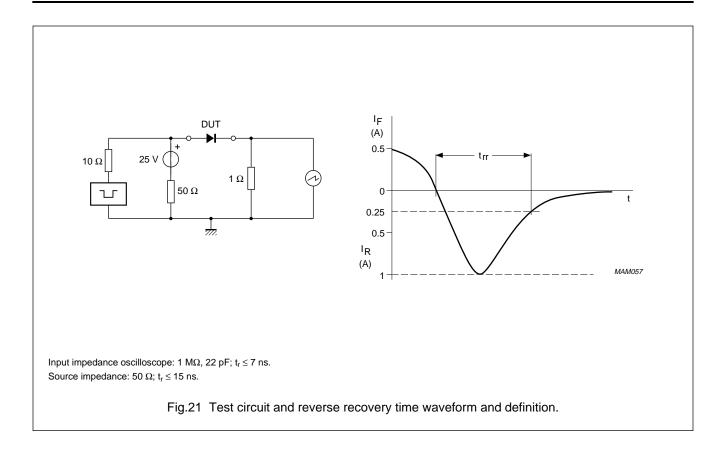




Fig.16 Reverse current as a function of junction temperature; maximum values.

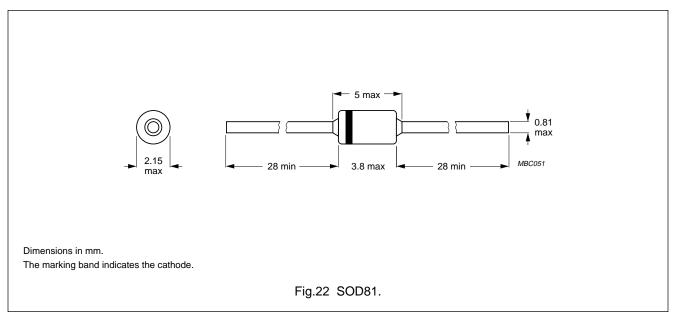



Fast soft-recovery controlled avalanche rectifiers

BYD33 series


voltage; typical values.

Fast soft-recovery controlled avalanche rectifiers


BYD33 series

Fast soft-recovery controlled avalanche rectifiers

BYD33 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.