

500V, 15A, 0.39Ω Max, $t_{rr} \leq 190$ ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- · Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

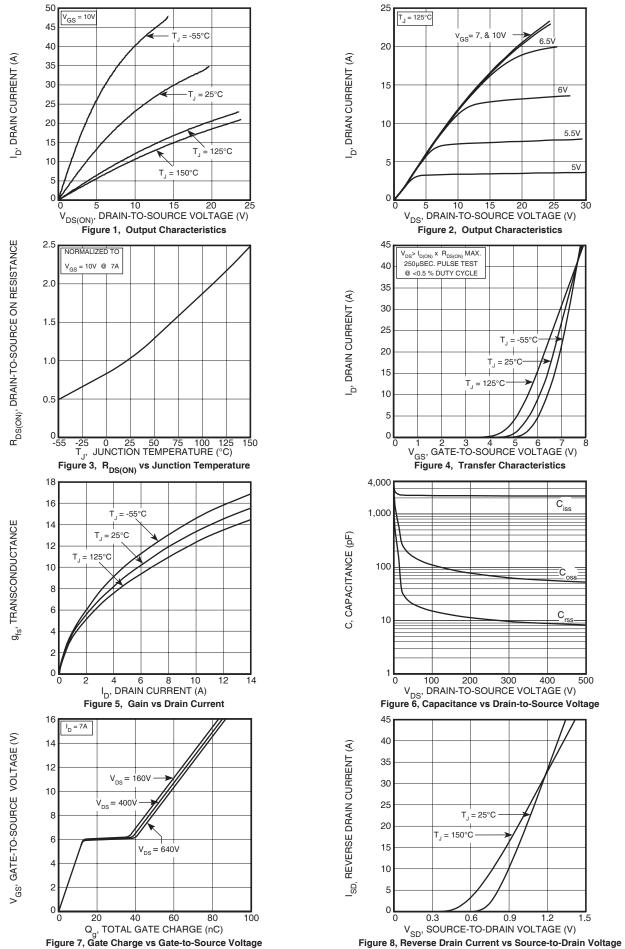
Symbol	Parameter	Ratings	Unit
L	Continuous Drain Current @ T _C = 25°C	15	
'D	Continuous Drain Current @ T _C = 100°C	10	Α
I _{DM}	Pulsed Drain Current ^①	45	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	305	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	7	Α

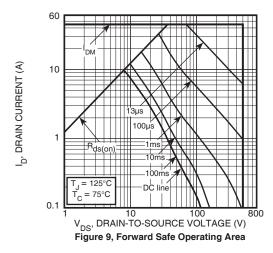
Thermal and Mechanical Characteristics

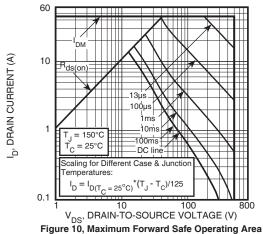
Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			225	W	
$R_{ hetaJC}$	Junction to Case Thermal Resistance			0.56	°C/W	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11			
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55		150	- °C	
T _L	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.07		oz	
			1.2		g	
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in·lbf	
				1.1	N·m	

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		500			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance®	V _{GS} = 10V, I _D = 7A			0.33	0.39	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.5 mA$		3	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ T_{J}	= 25°C			100	uА
DSS		V _{GS} = 0V T _J	= 125°C			500	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

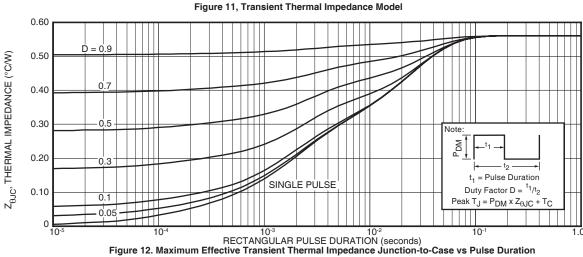
Dvnamic Characteristics

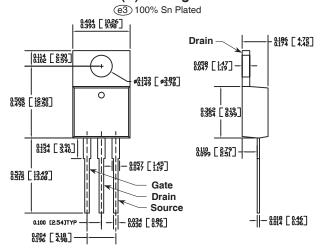

T_{.1} = 25°C unless otherwise specified


Ty = 23 0 unless otherwise specified							
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
g _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 7A$		11		S	
C _{iss}	Input Capacitance	V 0V V 05V		2250			
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		30			
C _{oss}	Output Capacitance	1 - 1141112		240			
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V 0V V 0V to 220V		140		pF	
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V$, $V_{DS} = 0V$ to 333V		70			
Q _g	Total Gate Charge	V 0. 40V 1 7A		55			
Q_gs	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 7A,$ $V_{DS} = 250V$		13		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		26			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		10			
t _r	Current Rise Time	V _{DD} = 333V, I _D = 7A		12		no	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 10\Omega^{\textcircled{6}}, V_{GG} = 15V$		26		ns	
t _f	Current Fall Time			8			


Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the	D .		15	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n unction diode (body diode)	s		45	, A
V _{SD}	Diode Forward Voltage	$I_{SD} = 7A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.0	V
t _{rr}	Reverse Recovery Time	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			190 340	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 7A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$ $V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		0.54 1.27		μC
I _{rrm}	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		5.9 7.9		А
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 7A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 333V$, $T_J = 125^{\circ}C$			20	V/ns


- 1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 12.45mH, $R_G = 10\Omega$, $I_{AS} = 7$ A.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- Q C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 C C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -5.22E-8/V_{DS}^2 + 1.21E-8/V_{DS} + 3.48E-11.
- (6) R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)



TO-220 (K) Package Outline

Dimensions in Inches and (Millimeters)