• I






      
           

Научно-популярный образовательный ресурс для юных и начинающих радиолюбителей - Popular science educational resource for young and novice hams

Основы электричества, учебные материалы и опыт профессионалов - Basics of electricity, educational materials and professional experience

КОНКУРС
language
 
Поиск junradio

Радиодетали
ОК
Сервисы

Stock Images
Покупка - продажа
Фото и изображений


 
Выгодный обмен
электронных валют

Друзья JR



JUNIOR RADIO

MOSFET, IGBT и Дарлингтона транзисторы

 

 

Полевой или FET (field-effect transistor) транзистор. Аналогичен биполярным транзисторам (BJT). Транзисторы FET переключаются по напряжению, а не по току. Ниже приведена табличка обозначения электродов данных транзисторов, похожих по принципу работы.

 

К основным типам полевых транзисторов относятся:

 

–         MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)

–         JFET (Junction Field-Effect Transistor)

–         MESFET

–         HEMT

–         MODFET

 

Наиболее распространенными являются MOSFET и JFET

Транзистор с полевым эффектом представляет собой трехполюсное однополярное полупроводниковое устройство, которое имеет очень схожие характеристики с биполярными, т.е. высокую эффективность, мгновенную работу, надежность и дешевизну и может использоваться в большинстве применений электронных схем для замены эквивалентных биполярных транзисторов (BJT). Полевые транзисторы могут быть сделаны намного меньше, чем эквивалентный BJT-транзистор, а их низкое энергопотребление и рассеиваемая мощность делают их идеальными для использования в интегральных схемах, таких как CMOS-диапазон цифровых логических микросхем. Два основных типа конструкции биполярного транзистора, NPN и PNP , которые в основном описывают физическое расположение полупроводниковых материалов типа P и N-типа, из которых они изготовлены. Это относится и к полевым транзисторам, так как есть также две основные классификации полевого транзистора, называемого полевым транзистором N- канала и полевым транзистором Р-канала . Полевой сконструирован без PN-переходов в пределах основного пути прохождения тока между стоком и истоковыми оконечными устройствами, которые соответствуют функционально коллектору и эмиттеру биполярного транзистора. Путь тока между этими двумя выводами называется «каналом», который может быть выполнен из полупроводникового материала типа «P» или «N». Управление током, протекающим по этому каналу, достигается путем изменения напряжения, приложенного к затвору . Транзистор с полевым эффектом, является «однополярным» устройством, которое зависит только от проводимости электронов (N-канал) или дырок (P-канал). Имеет одно главное преимущество перед BJT, так как их входной импеданс ( Rin ) очень высок (в тысячах Ом), в то время как у BJT сравнительно низок. Этот очень высокий входной импеданс делает их очень чувствительными к сигналам входного напряжения, но цена этой высокой чувствительности также означает, что они могут быть легко повреждены статическим электричеством.

 

Типичный полевик

 

 

Транзистор с полевым эффектом перехода (JFET)

 

Существует два основных типа полевого транзистора, полевого транзистора с полем перехода или JFET и транзистор с изолированным затвором IGFET , который более широко известен как MOSFET.

Биполярный транзистор соединен с использованием двух PN-переходов в основном канале переноса тока между эмиттером и коллектором. Транзистор с эффектом перехода (JUGFET или JFET) не имеет PN-переходов, но вместо этого имеет узкий кусок полупроводникового материала с высоким удельным сопротивлением, образующий «Канал» либо из кремния типа N, либо из кремния Р-типа, для того чтобы основные носители могли протекать через два омических соединения на обоих концах, которые обычно называются Drain и Source соответственно. Существуют две базовые конфигурации полевого транзистора с полем перехода, N-канальный JFET и P-канал JFET. Канал N-канального JFET легирован донорными примесями, что означает, что течение тока через канал отрицательно (отсюда термин N-канал) в виде электронов. Аналогично, канал Р-канала JFET легирован акцепторными примесями, что означает, что поток тока через канал положителен (отсюда и термин Р-канал) в форме дырок. N-канальные JFET имеют большую проводимость канала (меньшее сопротивление), чем их эквивалентные типы Р-каналов, поскольку электроны обладают большей подвижностью через проводник по сравнению с дырками. Это делает N-канальный JFET более эффективным проводником по сравнению с их аналогами P-каналов. Мы уже говорили ранее, что есть два электрода на обоих концах канала, называются сток и исток . Но внутри этого канала имеется третье электрическое соединение, которое называется затвор, материал типа P или N, образующий PN-переход с основным каналом.

 

Базовая конструкция для обеих конфигураций JFET.

 

Полупроводниковый «канал» представляет собой резистивный путь, через который напряжение V DS вызывает ток I D , и, таким образом, транзистор с эффектом переходного поля может проводить ток одинаково хорошо в любом направлении. Поскольку канал является резистивным по природе, градиент напряжения, таким образом, формируется по всей длине канала, причем это напряжение становится менее положительным, когда мы идем от клеммы Drain к клемме Source. В результате PN-соединение имеет высокое обратное смещение на клемме Drain и более низкое обратное смещение на клемме Source. Это смещение вызывает формирование «обедненного слоя» в канале и ширина которого увеличивается при смещении. Величина тока, протекающего по каналу между клеммой стоком и истоком, контролируется напряжением, подаваемым на вывод затвор, который является обратным смещением. В N-канальном JFET это напряжение затвора отрицательное, в то время как для JFET P-канала напряжение затвора положительное. Основное различие между JFET и BJT заключается в том, что когда соединение JFET обратно смещается, ток затвора практически равен нулю, тогда как базовый ток BJT всегда имеет некоторое значение, большее нуля.

Характеристические кривые выходного напряжения типичного транзистора FET.

Напряжение V GS, подаваемое на Gate, контролирует ток, протекающий между Drain и источниками. V GS относится к напряжению, приложенному между Gate и Source, в то время как V DS относится к напряжению, приложенному между Drain и Source.

Так как транзистор с эффектом «переходного поля» является устройством с управлением напряжением, «ток протекает в затвор» , то ток источника ( I S ), вытекающий из устройства, равен току стока, втекающему в него, и поэтому ( I D = I S ) ,

Пример кривых характеристик, показанный выше, показывает четыре различные области работы JFET, и они приведены как:

  • Омическая область - Когда V GS = 0 истощающий слой канала очень мал и JFET действует как резистор, управляемый напряжением.
  • Область отсечки - это также известно как область пинч-офф - это напряжение затвора, V GS достаточно, чтобы заставить JFET действовать как разомкнутая цепь, поскольку сопротивление канала находится на максимуме.
  • Насыщенность или активная область - JFET становится хорошим проводником и управляется напряжением Gate-Source (V GS ), в то время как напряжение источника стока (V DS ) оказывает незначительное влияние или не оказывает никакого эффекта.
  • Область пробоя - Напряжение между Drain и Source (V DS ) достаточно высоко, чтобы вызвать разрушение резистивного канала JFET и прохождение неконтролируемого максимального тока.

Кривые характеристик для транзистора с полевым транзистором с P-каналом являются такими же, как и выше, за исключением того, что ток стока I D уменьшается с увеличением положительного напряжения на входе-выводе V GS .

Ток стока равен нулю, когда V GS = V P. Для нормальной работы V GS смещен, чтобы быть где-то между V P и 0. Тогда мы можем рассчитать ток стока, I D для любой заданной точки смещения в насыщающей или активной области следующим образом:

Режимы полевых транзисторов

Как и биполярный транзистор, полевой транзистор, являющийся трехконтактным устройством, может иметь три различных режима работы и, следовательно, может быть подключен в схеме в одной из следующих конфигураций.

Конфигурация с общим истоком (CS)

 

В конфигурации Common Source (аналогично общему эмиттеру), вход применяется к Gate, и его выход берется из Drain, как показано. Это наиболее распространенный режим работы полевого транзистора благодаря его высокому входному импедансу и хорошему усилению напряжения, и поэтому широко используются широко распространенные усилители с общим источником. Режим общего источника соединения FET обычно используется усилителями звуковой частоты, а также с высоким входным импедансом предусилителей и каскадов. Будучи усилительной схемой, выходной сигнал 180 ° «находится в фазе» с входом.

Конфигурация общий затвор (CG)

 

В конфигурации Common Gate (по аналогии с общей базой) вход применяется к источнику, и его выход берется из Drain с Gate, подключенным непосредственно к земле (0v), как показано. В этой конфигурации потеря сигнала высокой входной импеданс предыдущего соединения теряется, так как общий затвор имеет низкий входной импеданс, но высокий выходной импеданс. Этот тип конфигурации полевого транзистора может быть использован в высокочастотных цепях или в схемах согласования импеданса, поскольку низкий входной импеданс должен соответствовать высокому выходному импедансу. Выход «синфазный» с входом.

Конфигурация общего стока (CD)

 

В конфигурации Common Drain (аналогично общему коллектору) вход применяется к Gate, и его выход берется из Source. Конфигурация общего стока или «источник-последователь» имеет высокий входной импеданс, низкий выходной импеданс и почти единичное усиление напряжения, поэтому используется в буферных усилителях. Коэффициент усиления напряжения источника повторителя конфигурации меньше единицы, а выходной сигнал является «синфазным», 0 o с входным сигналом. Этот тип конфигурации называется «Common Drain», потому что на дренажном соединении нет сигнала, имеющееся напряжение + V DD просто обеспечивает смещение. Вывод синфазен со входом.

Усилитель JFET

Как и биполярный транзистор, JFET можно использовать для создания однокаскадных усилительных схем класса A с общим усилителем JFET и характеристиками, очень похожими на схему с общим эмиттером BJT. Основным преимуществом усилителей JFET перед усилителями BJT является их высокое входное сопротивление, которое контролируется резистивной сетью смещения затвора, сформированной R1 и R2, как показано.

Смещение на усилителе JFET

 

Эта схема усилителя общего источника (CS) смещается в режиме класса «A» с помощью сети делителя напряжения, образованной резисторами R1 и R2 . Напряжение на истоковом резисторе R S обычно устанавливается равным примерно четвертью V DD , ( V DD / 4 ), но может быть любым разумным значением. Требуемое напряжение затвора может быть затем вычислено по этому значению R S. Так как ток затвора равен нулю, ( I G = 0 ), мы можем установить требуемое напряжение покоя постоянного тока путем правильного выбора резисторов R1 и R2 . Управление током стока при отрицательном потенциале затвора делает транзистор с эффектом переходного поля полезным в качестве переключателя, и важно, чтобы напряжение затвора никогда не было положительным для N-канального JFET, поскольку ток канала будет протекать к Gate, а не в сток, приводящий к повреждению JFET. Принципы работы для J-канала P-канала такие же, как для N-канального JFET, за исключением того, что полярность напряжений должна быть изменена на противоположную.

 

Читаем далее по теме

 

Условные обозначения транзисторов

МОП- транзистор (MOSFET)

Транзистор Дарлингтона

Транзистор IGBT

Биполярный транзистор (BJT)

 

 

 



Необходимо добавить материалы...
Результат опроса Результаты Все опросы нашего сайта Архив опросов
Всего голосовало: 380



          

Радио для всех© 2024