• I






      
           

Научно-популярный образовательный ресурс для юных и начинающих радиолюбителей - Popular science educational resource for young and novice hams

Основы электричества, учебные материалы и опыт профессионалов - Basics of electricity, educational materials and professional experience

КОНКУРС
language
 
Поиск junradio

Радиодетали
ОК
Сервисы

Stock Images
Покупка - продажа
Фото и изображений


 
Выгодный обмен
электронных валют

Друзья JR



JUNIOR RADIO

 

Замедляющая система

 

Замедляющая структура - устройство, формирующее и канализирующее эл.-магн. волны с фазовой скоростью v, меньшей скорости света(ВОТ ИМЕННО что БОЛЬШЕЙ скорости света, смотрите Максвелла…и его формулы, и настолько большей, что там есть множитель стремящийся в БЕСКОНЕЧНОСТЬ!!!  ) с в вакууме (замедленные волны) и обеспечивающее их длительное, синхронное взаимодействие с потоками заряж. Частиц(У Тесла и космических лучей и продольных сил механики). Величину п=с/v наз. коэф. замедления (замедлением), формально она совпадает с показателем преломления нек-рой эфф. среды. Длительное (в масштабе периода колебаний Т), синхронное взаимодействие частиц с волной обладает свойством избирательности, достигая макс, эффекта при скорости частиц v ц~v. Этими определяются осн. области применения 3. с.: электронные СВЧ-приборы, основанные на индуцир. черенковском излучении и аномальном Доплера эффекте, такие, как лампа бегущей волны (ЛБВ), лампа обратной волны (ЛОВ), магнетрон, нек-рые разновидности мазеров на циклотронном резонансе; синх-ротронные и линейные ускорители, сепараторы заряж. частиц; осциллографич. электронно-лучевые трубки бегущей волны. Аналогичные устройства в черенковских счётчиках, регистрирующие индивидуальное световое излучение быстрых частиц, наз. радиаторами. Эффект замедления достигается при помощи сплошных однородных сред с большими диэлектрич. и (или) магн. проницаемостями. Другой класс 3. с. связан с использованием неоднородных по длине (обычно периодич. или почти периодич.) структур. Это могут быть чисто металлич. устройства (спирали, волноводы с гофрир. стенками, цепочки связанных резонаторов и т. п.). Именно такие 3. с. п преобладают на практике (рис. 1).


Рис. 1. Примеры замедляющих систем: а - однозаходная спираль;б - волновод с гофрированными стенками; в - гребёнка; г - диафрагмированный волновод.

В спиральных 3. с. замедление п главной волны примерно равно отношению длины проводящих "нитей" спирали к длине их намотки, что позволяет интерпретировать механизм замедления как распространение волн тока со скоростью с вдоль этих проводящих нитей, т. е. по удлинённому пути (рис. 2). При этом дисперсия (зависимость n от w) отсутствует, групповая скорость равна фазовой.

 


 

РИС. 2. Модель спиральных замедляющихся систем: а - сплошной цилиндр с анизотропной проводимостью, бесконечной вдоль витков и нулевой перпендикулярно им; б - дисперсионная зависимость осесимметричной волны в нём, n:=lim n при kR2/h ":, k=w/c.

В периодич. 3. с. любую компоненту поля нормальной волны u(r, t) = Reu0(r)•ехр(iwt) можно представить в виде суперпозиции т, н. пространств, гармоник (ПГ) (следствие Флоке теоремы):

где z - осевая, a r1 - поперечная к ней координаты; е т(r^) - амплитуда m-й ПГ, bm=b0+2pm/d - её волновое число, причём обычно полагают |b0|<|bm|; d - период 3. с. Фазовые скорости ПГ vm=w/bm отличаются друг от друга. <Замедление и в др. случаях можно объяснить удлинением пути волн из-за переотражений от периодически расположенных препятствий, это же приводит и к возникновению ПГ в (1). В синхронизме с движущимися частицами могут находиться любые ПГ, но это вовсе не означает, что и др. ПГ обязаны быть медленными - волновое поле (1) допускает существование и быстрых гармоник (|v|>c), к-рые в неэкранир. системах ведут себя как излучающие (поэтому их иногда наз. вытекающими волнами). Величина и направление групповой скорости определяются всем набором ПГ (1). У части ПГ фазовые скорости совпадают по направлению с групповой (прямые гармоники), у др. части vm противоположны групповой скорости (обратные гармоники). Синхронизм с прямыми ПГ используется в приборах типа ЛБВ, ускорителях и управляющих элементахосциллография, трубок; в приборах типа ЛОВ используют синхронизм с обратными ПГ. <Эффективность взаимодействия ВЧ-поля с движущимися частицами в 3. с. характеризуется в электронных СВЧ-приборах сопротивлением связи R св = |Е т|2/2b2 т Р, а в ускорителях - шунтовым сопротивлением R т=|Е т|2/2a Р, где Р- поток энергии через поперечное сечение 3. с., Е т- компонента поля синхронной гармоники, действующая на заряж. частицы, a - коэф. затухания волн. <Важной особенностью нормальных волн в любой пе-риодич. системе являются частотные полосы ненропускания, когда Imbm№0 даже в системах без потерь. Это одномерный вариант отражения, возникающего в произвольных периодич. решётках (см. Брэгга-Вульфа условие). Любую систему, направляющую волны, фазовая скорость к-рых меньше скорости однородной волны в окружающем свободном пространстве, можно отнести к 3. с., независимо от её назначения. Сюда, в частности, относятся нее типы волноводов диэлектрических, а также системы, направляющие поверхностные волны.

  • ЗАМЕДЛЯЮЩАЯ СИСТЕМА — (замедляющая структура), устройство, формирующее и направляющее медленные эл. магн. волны, фазовая скорость к рых меньше скорости света(ВОТ ИМЕННО что БОЛЬШЕЙ скорости света, смотрите Максвелла…и его формулы, и настолько большей, что там есть множитель стремящийся в БЕСКОНЕЧНОСТЬ!!!  )  с. С медленными волнами возможно синхронное вз ствие движущихся заряж. ч ц, что и определяет осн. применение З …   Физическая энциклопедия
  • Замедляющая система —         замедляющая структура, волноводная система СВЧ электронных приборов, посредством которой осуществляется замедление фазовой скорости электромагнитных волн. Эта скорость уменьшается приблизительно до скорости движения электронов в… …   Большая советская энциклопедия, (Причём тут вообще скорость электронов? Если речь идёт только о фазовой скорости, она ЗАМЕДЛЯЕТСЯ)
  • ЗАМЕДЛЯЮЩАЯ СИСТЕМА — волноведущее электрич. устройство с периодич. структурой для замедления фазовой скорости электромагн. ВолнПри этом учтём, то, что ШИРОКОПОЛОСНАЯ система ТЕСЛА, работала И в диапазоне механических, продольных и поперечных вибраций, и вплоть до СВЧ . Применяется в электронных СВЧ приборах с длит. взаимодействием (лампах бегущей волны, лампах обратной волны, амплитронах и др.), а также в …   Большой энциклопедический политехнический словарь

Широко используется замедляющая система в виде цилиндрической спирали. Эта замедляющая система была использована Р. Компфнером в 1944 г. в первой ЛБВ, и сейчас большинство серийно выпускаемых ЛБВ тоже использует спиральную замедляющую систему, что объясняется многими ее достоинствами. Ни, одна из известных замедляющих систем не может конкурировать, со спиралью в отношении широкополосности. При упрощенном рассмотрении процессов в такой системе можно предполагать, что волна Т распространяется со скоростью света с вдоль спирального проводника. Пусть D будет средний диаметр спирали, a L – ее шаг. Тогда время, за которое волна обегает один виток,

 

/kalejdoskop/tesla/zam/image003.gif

 

Если шаг спирали много меньше диаметра, т. е. L<<πD, имеен t<<πD/c. Волна за то же время проходит вдоль оси спирали путь, равный L. Следовательно, фазовая скорость(И ТУТ ФАНТОМ – ОТЛИЧНО, и его материализуем с помощью ПРИЁМОВ от ТЕСЛА!!! ) волны ve вдоль оси спирали равна L/t или vф=cL/πD. Обычно замедляющую систему характеризуют коэффициентом замедления Кзам, равным отношению скорости света к фазовой скорости замедленной электромагнитной волны.

Наибольшее распространение в технике СВЧ получили замедляющие системы, представляющие собой линии передачи с периодически повторяющимися неоднородностями. Некоторые из них представлены на рис. 4.3, где 1 — спираль, 2 — гребенка, 3 —встречные штыри, 4 — сдвоенный меандр на диэлектрической подложке, 5 — диафрагмированный волновод, 6 —диафрагмированный волновод с индуктивными щелями связи, 7 — “лист клевера”, 8 — меандр на диэлектрической подложке.

Рис. 4.3

 

Тогда Kзам=c/vф=πD/L (4.2)    Коэффициент замедления тем больше, чем больше отношение длины витка к шагу спирали. Изменяя диаметр спирали D и ее шаг L, можно в широких пределах изменять коэффициент замедления.  Более точный анализ распространения электромагнитных волн вдоль спирали показывает, что спираль обладает дисперсией, т. е. фазовая скорость волны в спирали зависит от частоты. Но на достаточно высоких частотах дает хорошее приближение. Рассмотрим некоторые общие закономерности распространения электромагнитных волн в замедляющих системах. Замедляющие системы представляют собой периодические структуры, имеющие свойства полосовых фильтров с бесконечным числом полос пропускания. В приборах используется чаще всего полоса, пропускающая самые низкие частоты, она называется основной. Остальные полосы называются высшими. Поле в периодической структуре удовлетворяет теореме Флоке, которая утверждает, что среди решений уравнений Максвелла, удовлетворяющих граничным условиям, всегда найдется такое решение, при котором поля в соседних ячейках отличаются лишь постоянным множителем p=e-r, т. е. E(z+L)=e-r Е(г). В полосе пропускания для систем без потерь величина Г=iψ – мнимая. Это означает, что поле в соседних ячейках отличается лишь сдвигом по фазе на угол ψ. Введем обозначение ψ=β0L0—постоянная распространения волны) и умножив обе части равенства на ехрiβo(L+z), при этом заметим, что функция E0(z)=E(z)ехрiβoz=E(z)ехрiβo(z+L) — периодическая, а ее период совпадает с периодом структуры L. Отсюда следует, что поле в системе E(z) можно представить в виде произведения двух периодических функций: E0(z) и ехрiβoz. Учитывая и временной множитель ехрiωt, можно записать

 

E(z,t)=E0(z)ei(ωt-βoz) (4.3)

 

Функция E0(z) периодическая, L — ее период. Разложение E0(z) в ряд Фурье дает

(4.4)

где

Подставляя (4.4) в (4.3), получим

(4.5) 

Распределение поля в системе представлено в виде суммы бесконечного числа бегущих волн с амплитудами am(x,у) и постоянными распространения

(4.6) 

Эти волны называются пространственными гармониками. Их совокупность удовлетворяет периодическим граничным условиям. Решение в виде одной пространственной гармоники не может удовлетворить граничным условиям. Все гармоники изменяются с одной и той же частотой. Каждой пространственной гармонике соответствует своя фазовая скорость, которая определяется соотношением

(4.7)  Групповая скорость всех пространственных гармоник одинакова:

(4.8)   

Зависимость фазовой скорости (или коэффициента замедления) от частоты в свободном пространстве называется дисперсией замедляющей системы, а графики этих зависимостей — дисперсионными характеристиками или кривыми дисперсии. Каждой пространственной гармонике соответствует определенная ветвь дисперсионной характеристики.

Рис. 4.4

 

Волна (или пространств венная гармоника), у которой направления групповой и фазовой скоростей одинаковые, называется прямой волной, волна с противоположными направлениями скоростей — обратной волной. В зависимости от знака производной d|vфm|/dω дисперсия может быть нормальной (d|vфm|/dω<0) и аномальной (d|vфm|/dω >0). При увеличении частоты нормальная дисперсия характеризуется уменьшением абсолютного значения фазовой скорости, а аномальная — ростом. Для всех обратных гармоник дисперсия аномальная, прямые гармоники могут иметь как нормальную, так и аномальную дисперсию. На рис 4.4. показана дисперсионная характеристика замедляющей системы. По оси абсцисс отложен фазовый сдвиг на один период замедляющей системы βmL, определяемый (4.6), а по оси ординат—частота ω. Сплошные кривые относятся к гармоникам т=0, ±1, ±2. Нулевая гармоника (m=0) соответствует изменению угла от 0 до π. Эти пределы в соответствии с теорией фильтров определяют полосу пропускания, заключенную между ω0 и ωπ. Сдвиг фазы для гармоники m=+1 по определению (4.6) на 2π больше, чем при т=0, поэтому кривая для т=+1 существует в пределах (2 3)π.Соответственно смещаются на 2π вправо кривые при каждом увеличении на единицу номера т. Переход от т=0 к т=-1 эквивалентен смещению кривой в область фазы от -π до -2π и т. д. Полоса пропускания для всех пространственных гармоник одинакова и равна полосе пропускания замедляющей системы. Фазовая скорость гармоники с учетом (4.7) пропорциональна тангенсу угла наклона у прямой, проведенной через начало координат и точку дисперсионной кривой для выбранной частоты <0. Групповая скорость гармоники пропорциональна производной в данной точке, т. е. tg a. Очевидно, что на границах полосы пропускания групповая скорость гармоник равна нулю (экстремальные точки кривых). Групповая скорость всех пространственных гармоник при данной частоте ω одинакова и положительна. Для варианта замедляющей системы, дисперсионная характеристика которой приведена на рис. 4.4, наибольшая фазовая скорость у нулевой гармоники. С увеличением положительного номера т фазовая скорость уменьшается, фазовые скорости гармоник m= -1, -2 отрицательны (противоположны направлению групповой скорости) и также уменьшаются с ростом номера. В рассматриваемом случае гармоники m=0, +1, +2 — прямые, а m= -1, -2 — обратные. Используя дисперсионные кривые, можно выяснить зависимость фазовой скорости любой пространственной гармоники от частоты. В нашем примере прямая нулевая гармоника имеет нормальную дисперсию (фазовая скорость уменьшается с ростом частоты). Обратные гармоники (т= -1, -2) обладают аномальной дисперсией. Легко убедиться, что для прямой гармоники т=+2 вблизи границ пропускания дисперсия нормальная, а в остальной области аномальная. Важной характеристикой замедляющей системы является сопротивление связи, которое характеризует эффективность взаимодействия электронного потока с полем в замедляющей системе. По определению сопротивление связи

(4.9) 

Чем больше продольная составляющая напряженности электрического поля Еzm в месте прохождения электронного пучка при данном потоке мощности Р в системе, тем больше сопротивление связи. Если выразить поток мощности через запасенную энергию W на единицу длины системы и групповую скорость (P=vгW), то сопротивление связи

(4.10)  

Так как групповая скорость входит в выражение для сопротивления связи, то Rсв тем больше, чем меньше крутизна tg a дисперсионной характеристики (см. рис. 4.4). Изменяя скорость электронов ve регулировкой ускоряющего напряжения, можно выполнить условия синхронизма для любой пространственной гармоники. Так как фазовая скорость нулевое пространственной гармоники наибольшая, то для взаимодействия с ней необходима наибольшая скорость электронов, что требует высокого ускоряющего напряжения. Для взаимодействия электронного потока с высшими гармониками замедляющей систем скорость электронов должна быть меньше и соответственно меньше будут ускоряющие напряжения. Однако взаимодействие с высшими пространственными гармониками для систем 1, 2, 6 рис. 4.3 получается неэффективным, поскольку они имеют малое сопротивление связи. Поэтому в приборах СВЧ используются в основном нулевая и плюс первая или минус первая гармоника. Прямые пространственные гармоники используются в ЛБВ, а обратные — в ЛОВ. Дисперсионная характеристика замедляющей системы определяют ширину полосы частот усилителя и диапазон электронной перестройки генератора. Строгий метод расчета замедляющих систем основывается на решении уравнений Максвелла с учетом конкретных граничных условий. Однако сложность конфигурации большинства замедляющих систем затрудняет решение этой задачи. Часто применяются различные приближенные методы, среди которых широко распространен метод эквивалентных схем. Замедляющая система представляется эквивалентной схемой в виде цепочки ячеек фильтра с сосредоточенными постоянными. Этот метод позволяет оценить ширину полосы пропускания, а также качественно определить влияние отдельных элементов замедляющей системы на характеристики.

 

Лит.: С и л и н Р. А., Сазонов В. П., Замедляющие системы, М., 1966; Нефедов Е. И., Фиалковский А. Т., Полосковые линии передачи, 2 изд., М., 1980.Я. Ф. Ковалев, Р. А. Силин.

 




Необходимо добавить материалы...
Результат опроса Результаты Все опросы нашего сайта Архив опросов
Всего голосовало: 381



          

Радио для всех© 2025